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AERONAUTICS

THEORETICAL ANTISYMMETRIC SPAN LOADING

ARBITRARY Pti FORM AT SUBSONIC

By John DeYoung

SUMMARY

mm WINGS OF

IsPEEDs

A simplified lifting-surface theory that includes effects of c-
pressibility and spanwise variation of section lift-curve slope is used
to provide charts with which antisymetric loadtag due to arbitrary anti-
symmetric angle of attack can be found for wings having symmtric plan
forms tith a constant spanwise sweep angle of the quarter+hord lW.
Considerateion is given to the flexible wing in roll. Aerodynamic char–
acteristics due to roll.~, deflected ailerons, sad sideslip of wimgs
tith dihedrsl are considered. Solutions we presented for straight-
tapered wings for a range of swept plan forms.

Reference 1 has
mating the stability
lime theory on which
results for straight

IN!I130DUCTION

been for many yeers the standard reference for esti–
and control chsracteritiics of wings. The l.ifting–
this work was based gave generally satisfactory
wings having the aspect ratios considered; however,

the use of wing sweep co~ined with low aspect ratio has made an exten-
sion of this work desirable. Lifting-line theory cannot adequately
account for the increased induction effects due to sweep and low aspect
ratio; consequently, it has been found necessary to turn to the more
complex lifting-surface theories.

Of the many possible procedures, a simplified lifting-surface theory
proposed by Weiss@ger and further developed and extended in reference 2
has been found especially,suited to the rapid computation of chsr&cter-
istics of wings of arbitrary plan form. Comparisons with experiment have
generaUy verified the theoretical predictions. In references 3 and 4,
this methd has been used to compute for plain, unflapped w3ngs,the aero-
dynamic characteristics dependent on symmetric loading. The same simpli–
fied lifting-surface theory canbe extended to predict the span loading

,..—.. ———. . —.-.. .— _._.— —. ---——----— --- ---—-—- ——-—



2

resuiting from antisymmetricl distributim
I&om such loadings, the damping moment due

of the wing
to rolling,

lMCA TN !21k0

emgle of attack.
the roll=

moment due to deflected ailerons, &ml the rolling morwnt due to dihedral
angle with the wing h sideplip can be determined. A recent publication
(reference 5) makes use of the dmplified lifting-surface theory to find
spzloading characteristics of straight-tapered swept.wings in roll.and I
load@ due to dihedral angle with the wing in sideslip. Experimental
checks of the theory for the damping-in-roll coefficient and rolling
moment due to sideslip were very favorable. The range of plan forms
considered in reference 5 is somewhat limMed and aileron effectiveness
was not included. The loading due to aileron deflection normally involves
excessive labor when computed by means of the simplified lifting-surface
theory; however, developmsmt of the theory, presented in reference 6,
that deals with flap and aileron effectiveness for low-spect%ratio wings
provides a means by which the simplified lifting-surfacemethod can be
used to obtain spanwise loading due to aileron deflection.

It is the purpose of the present analysis to provide simple methods
of fhding antisymmetric loading and the associated aerodynamic coeffi-
cients and derivatives for wings with symmetric plan farms limited only
by a straight quarter+hord line over the semispan. Means will be pre-
sented for finding quickly the aerodynamic coefficients of span loading
due to rolling, of spsm loading due to deflected ailerons, and of span
loading due to sideslip of wings with dihedral. Flexible wings, when
the flexure depends principally on span loading as in loading due to
rolling, can be included in the analysis.

A

b

c

Ca

Cav

c1

mTA!rIoN
.

aspect ratio
()

b2
T

w@! spa mamred perpendicular to the plane of symuetry, feet

%ing chord, feet

2aileron chord, feet

()
%l=m wtng chord : >

local lift coefficient

feet

(
local lift

)

1~ word antisymnetric is understood to indicate that a distribution of
loading or angle of attack is equal W @solute magnitude on each half
of the w@g but of opposite sign.

2Measured parallel to the plane of symmetry.

,

.
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NACA TN 2140 3

Czc

%cav

%

ed

G

‘v

hn

M

m

P

pb/2V

Pvn

tiduced drag coefficient
(
induced dr

qs 9

rolling+nome
(

nt ~oeffi~ient ~
qsb )

rolling momnt due to rolling [*I ‘,per r&iian

acz
rolling moment due to aileron deflection

()%-
, per radian

()spanwise loading coefficient for unit rollbg moment ~
c1

scale factor

factors of loading interpolxctionfunction

spanwise loadlng coefficient or dimensionless circulation

(~),or ($) ~

()G
spanwise loading coefficient due to rolling —

pb/2V
,per radian

spanwise loading coefficient due to aileron deflection
()

g
5

per radian

pemmeter
[+(h)(~)]

integration factors for spsmdse loadhg due to a~erons

Mach number

arbitrary number

rate’of rolling,

of Spsm

radians

stations defined by q = cos ‘—
m+l

per second

wing-tip helix angle, radisms *

coefficient deyending on wing geometry and hdicating the

imfluence of antisynm3tric loadtng at spsn station n on
the downwash angle at span station V

.

——.-. . —— -.-.. — ..-— .— —.



NACA m 2140

free-stream dynamic pressure, pounds per squsre foot

wing srea, squsre feet

()2ratio of aileron chord to mlng chord >

free-stream velocity, feet per second

induced velocity, normal to the lifting surface, positive for
downwash, feet per second

lateral coordhate measured from the wing root perpendicular to
the plane of symmetry, feet

2section angle of attack at span station v, radians

2- ofantimtric twist of the elastic wing produced bytbe
loading due to rolling, radians

%rate of change of wing-section angle of attack with control-~
face angle for constant section lift coefficient

compressibilityparroter (m)

angle of sideslip, radians
.

dihedral angle measured perpendicular to the plane of SymQketryj
radians

spsnwise circulation, feet squared per second

2ang~ of deflection of full Wing<hord control surface, radians

angle of deflection of full+ing-chord control surface, measured
perpendicular to the hinge line, radians

dimmsionless lateral coordinate
()b%

dimensionless aileron span
(

aileron span

b/2 )
Yc.p.

()
spantise center of presmzre on one wing panel —

b/2

trigonometric spanwise coordinate 9, indicating the edge of the
aileron span, radians

%ee footnote 2 p.2.

.——.—. _—— — .—— —
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A

n,V

k

cop.

a

t

T

R

2TC
ratio of section lift<urve slope at a span station V to —,

both at the same Mach number P

sweep amgle of the wing quarter~hord linej positive for Sweew
back, degrees

compressibility sweep augle

taper rat,io
(

tip chord

root chord)

parameter [tan-l~~)],degrees

trigonometric span-se coordinate (COSA q), Tadism

Subscripts

integers pertaining to spcific span stations given by

Q=cos: Vltorq=cos —
8

pertaining to span station k

center of pressure

aileron

pertaining to

wing tip

wing root

fiactio~f+ing-chord ailerons

average or man

DEVELOPMENT OF METEOD

5 simplified lifting+mrf ace m?thod used herein replaces a lift–
ing surface by a lifting vortex located at the wing one-quarte~hord
line● The boundary condition for determining the vortex strength dis-
tribution specifies that, along the three-quarter-chord line of the
wing, there shall be no flow through the lifting surface. ti effect,
this specifies that, at the three-quarter-herd line, the ratio of the
velocity normal to the mean cdber line (induced by the bound and trail–
ing vortices) to the velocity of the free stream shall.equal the sine
of the angle of attack.

.

.
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SPSn loadings ere theoretically additive. Since the symetric
angle-of+ttack distribution contributes only to symmetric loading, it
follows that the antisymmetric loading is independent of symmetrica3Jy
distributed wing twist or camber; hence, to fhd antisymetric loading,
it is only necesssry to consider the loading resulting from the anti-
symmetric distribution of the angle of attack across the wing span. In
the subject case, such a dis~ibution is experienced by the wing as
tiuced angle due to rolling , the effective twist due to aileron
deflection, or sideslip of the wing with dihedral.

For an antisynmetric angle+f-ttack distribution, the lo’adingdis-
tributionwi~. be equal in dsolute magnitude on each semispan,but of

‘ opposite sign. The Loading therefore needs only to be found over the
semispsny and, since the loading is zero at tilewing root, only span
stations outboard need be considered. The matxtical development of

‘ the simplified lifting-surfacemethai for the case of antisymetric
loading is given tn Appendix A. As shown in Appendix A, (xrA)/2 linesr
equations in terms of loading distr~bution are obtained which satisfy
the ~ angle+fattack conditions at the three-qtie~hord line at
m stations n, where m is en arbitrary odd titeger. These equations
ere represented by the summations

m-l—.
2

a~ =
I

Pm Gny
-l ‘V=l, 2, 3, . ● . ~ (1)

n=l

% consideringthe case of the angle induced by rolling as equivalent
to en antisynm&ric distribution of twist, it must be noted that
account should be taken of the fact that a rolling wing leaves a
twisted vortex trail; whereas a twisted wing does not. The difference
in induction effects on the wing of the straight and twisted vortex is

> considered insignificanthere, as has been assumed in other analyses.
%he reader should note that the boimdary condition is given by

‘v = V sin av from which (w/V)v is seen to equal stn av. The sub-
stitution of av for sin uv has the effect of increasing the value
of loading on the wing above that necessary to satisfy the boun@ry
condition. However, the boundary condition was fixed assuming that the
shed vortices moved downstream in the etiended chord plane. A more
realistic picture is obtained if the vortices are assured to move do-
stream in a horizontal.plane from the wing trailing edge. It can be
seen readily that, if this occurs, the normal component of velocity
induced by the trails at the three-quarter<hord line is reduced and,
if the boundary condition is to continue to be satisfied, the strength
of the bound vortex must increase. It follows that mibstitution of av
for sin av then has the effect of account~ for the bendhg up’of
the trailing vortices. It is not hewn how exact the correction is,
but the calculations and experimental verification show it to be of
the correct order.

.
——. —



NACATN 2140 7

where

al~ antisymetrtc angle of attack at wing station v

Pv~ coefficients that for a given value of m depend on wing
geome~, compressibility,and section lift-curve slope

Gn loading coefficients at span stations n

The application in Appendix A of the present report is with m=7.
Since the loading at the midspan station is known to be zero, considera–
tion is required of only three stations: n=l,2,3, equal to wing semispan
positions of q = COS (nYc/8) = 0.924; 0.707; ando.383. Equation (1)
thus becomes

(2)

where the integer v pertains to span station q = cos (vfi/8)

To obtafi”the loading coefficients Gn = (czc/2b)n, it remains
only to evaluate the coefficients pm and the spanwise variation of
the antisymstric @e of attack q.

Evaluation of the Coefficients ~

Since m is chosen, ~ becomes a function only of wing geometry,
compressibility, and section lift-curve slope. The effects of compressi–
bility and section lift-curve slope are equivalent to a change inw~
plan form5 and can be accounted for by a proper ad~ustment of the pvn
values. AS sho~.ti Appendix B) pvn can be conveniently presented as
a function of two parameters, namely, a compressible-sweexe parame-
ter defined as AR= tan-l(tan tip) and a parameter Hv involving the
ratio of whg
defined by

# where

Kv ratio of
to the

sp& to wing chor”dand variable section lift<urve slope,

(3)

experimental section lift-curve slope at span station v
theoretical vslue of 2Yr/13,both at the same Mach number

●
bCompressibility and section lift+xrve slope are discussed in Appendix B.

__ ....._.-—. .....-..——-— _____ ——— .--— --.—— ——.
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cv wing chord at span station V

The Vdl19 dv

Equation
terms of wbg

where

‘av

‘Vfiav

cv~av

(BA/~av)

The term

is a scale factor given by

dv = 0.061 for v = 1

= 0.234 for v = 2

= 0.3$1 for V = 3

(3) C= be written in alternative
geometry paramters that are more

“’1(4)

form that gives HV in
signific~t; thus

( )[PA
Hv=dv —

1

‘av (k~~v) (%/caV) 1
.

(5)

ratio of average section lift-curve slope to 2Yt/Bboth at
the same Mach nuniber

spamime distribution of section lift-curve slope for a
given Mach number

spanwise distribution of the wing chord

compressible aspect ratio end average section lift-curve
~ope Par-ter

(Kv/KaV; (cV/cav)
of equation (5) gives an effective aer- ,

dynamic taper of a wing. !thedistribution Of ~@av may VWJ’ with
Mach number, particularly at transonic speeds (e.g., due to spenwise .
variation of airfoil section). However, since the distribution con-
tributes to taper effect, the loading distribution and not the total
loading will be appreciably affected.

With HV determined from’equations (3) or (5) and (4), the values
of pvm nine in all, are presented in fi~e 1 where ~ is given .
as a function of HV for various values of %“

For the case of straightAapered wings with arbitrary section lift-
curve~lope distribution for which the chord distribution is specified
by taper ratio, evaluation of equation (5) is given in figure 2 where
(hi~av)%

for each of the three span stations is qhown as a function of
(PA/~av)
tayer ratio.

-.. —-—— —-
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Evaluation of Autisymetric Angle-ofAttack Distribution av

The antisyaunetric .angleafattack distributions most cormuonly
encountered are those resuiting from rolling wings) ailercm deflection,
and sideslip of wings with dihedral. Evaluation of the angl~f-ttack
distributions for these various cases is outlined in the sections imme-
diately following.

Rolling WiIlgS.– For the case of the rigid wing, the induced veloc–
ity normal.to the wing surface is equal to the upwash velocity experienced
by the rolling wing. Thus, at span station V

(6)

where pb/2V is the tip helix angle. It should be noted that the rela–
tion given by equation (6) assumes the ting structure to be rigid in that
,the distribution of av is completely defined by the linear distribution
of helix angle. In the case of flexible wings, however, the expression
for av must be modified to account for the streamwise angle-of-ttack
change which may occur due to bending or torsional deflections. In this
case,

(7)

where da~ represents the modif@ng influence of flegibility. Normally,
&v is not considered for straight wings since only the effect of tor-
sion (which is usualdy small.)is tivolved. On swept Wings, however, the
effect of bending csn cause Lav to be quite large so that the aV
distribution may be effected considerably. Due to the interaction
existing between the aerodynamic and structural forces, Lav csnnot be
detemined directly, but must be found through eqmtions of equilibrium
or by iteration. With the loading for the rigid wing provided, however, ,
the iteration procedure becomes relatively easy to apply. The ftist
approximation of av is found from the loading of the rigid wing and
further refinements of av may be found utilizing the successive loadings
for the flexible wing as determined.

Deflected afleronS.”– Where the spsntise distribution of the angle
~ is to be considered equivalent to antisymmtric aileron deflection,
it must suffer a discontinuity at the spanwise end of the control surface.
The loading when such a discontinuity is present can be duplicated by a.
proper distribution of antisymmetric twist. In Appendix C, the anti-
_tric ~st distributi~ requfied by the present theory to give acc~
rate spsm loading distribution due to ailerons is found with the aid of
zero-aspectiatio wing theory given by reference 6. To m@imize the “
computation involved, it is convenient to consider both the case of out-
board and inboard ailerons.

. . .- . . ..— ----—— .—. --——— —— ---.——— — --— ..— — —
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1. Outboard ailerons: With m=7,
can be conveniently defined for
the aileron spans TIa,measured

NACATN 2140

three different aileron spans
the outboard ailerons. For
from the wing tip inboard,

the antisymetric ~–st distribution required per unit deflec-
tion of full+ring-chord ailerons, cql/6, is givenby

Case

qa

I

0.169

1.003

.017

.006

II

0.4-44

0.971

.996

.014

III

0.805

0.998

.991

.978

(8)

2. Inboard ailerons: With m=7, three different aileron spans
can be conveniently defined for the tiboard ailerons. For
the aileron spans ‘qa measured from the wing midsp&n out-
board, the antisynmetric twist distribution reqtied per unit .
deflection of full+?ing-chord ailerons, av/b, is givenby

Case I Iv

I qa I 0.556

al

5- 0.044

%
6- –.017

%3 1.087
iT

0.831

0.013

.961

1.095

VI

1.000

1.016

●979

1.101

(9)

. SideSliP of -S with dihedral.– For calculating the rolling

moment caused by dihedrsl angle for the sideslipping wing, the effect of
the skewness of the vortex field in altering the effects of the dihedral
angle will be assumed to be small (as assumed in reference 5). The
problem then simplifies to finding the rolJ-ingmoment due to antisymetric
singleof attack with ~ unskewed vortex field. The solution to this
problem is the same as for the ailerons which has already been solved.

.-. ——



o IVACATN 2140 l-l

The antisymmetric diStrhZtiOD of angle of attack for the side-
slipping wing ~th dihedral is gi’~n by

9

where

% effective angle+f+ttack

.~r

distribution

E angle of sideslip ~asured positive in the
direction from the plain of synmetry

r dihedral angle

The wbg paramter
is approximate for

For unit i$r

can be substituted

For the cases

(lo)

counterolockuise

r is not affected by Cqressibflitye E~tion (10)

SInaILval.uesof ~ andr.

over the span of the ailerons considered,

~r=b

for ~ in equation~ (8) and

AI?PIZCATIOI?OF METHOD

(n)

(9).

of antisymmetric angle~f -attack distributions result-
ing from rolling, aileron deflection, or sideslip with dihedral, it is
possible to present a set of simultaneous equations which are required
for the solution of the load distribution for an arbitrary plan form.
With the loading known, Mtegration formulas can be given to determine
aerodynamic coefficients.

The loading+listribution coefficient ~ determined from the SOIP
tions of the simultaneous equations, are functions of pm which has
been shown in a preceding section to be a function of wing geondmy,
compressibil.ity,and section lift+urve slope. The aerodynamic coeffi-
cients are integrations of the load distribution and, therefore, will
also be a function of wing geomtry, compressibility, and section lift-
curve-slope parameters. Application of the mthod to the general SOIW
tion for arbitrary chord distribution is outlined and solutions are pre-
sented for the case of straight taper.

.

,

. ——.. . .... . -.—..—— . .—.-- —.- —. -—- .——-— ——-—-.



12 IUK!ATN 2140 0 .

General Solution

.

Aerodynamic characterifiicsdue to rolling.- The solutions for the
aeroitvnamiceffects due to @ roll- * till be fo~d ~ 10~@%. —
rolMng momentj spanwise center of pressure,
obtained.

1. Simultaneous loading equations:
obtained from figure 1 aud table
given by equations (3) or (5).

end Muted drag will be

The pm values are
18 with VOhlOS of HV

The simultaneous equations (2), for the rigid and flexible
w@b respectively, become:

4 ● 70’7 = pgl + PZE2 + P2&

-0.383 = Pgl% + P32--2+ P3375&!

where

~- ‘n
pb/2V

-0.924 + ‘1 - – ‘E= P1lG1 + P12G2 + P1~ ~
G 1

I

% end Axv is tbe ticremental angle of
*re’%= Z%.
attack due to aeroelastic effects.

2 ● Loaahlg distribution: The loading-distribtiion coefficient
is given by G = czc/2b. Other forms of the loadhg coeffi-

cient are given by the identities

‘values of ~ beyond the scope of figure 1 sre included in table 1.
For velues of ~ larger than those included in figure 1 and table i,
the ~ curves csn be obtained from equation (B8) which gives the
linear asymptotes of the function.

o

.

___
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1 Clc cl c~c
G=——=—— (14)

2A Cav a Czcav

3.

4.

!!?heloadi ngisknownto bezeroat q=O and landis
deterntned at three titermediate span stations. Values of
loading at other span stations can be obtained from a load-
- function derived in Ap~ndti B or, with equations (B23)
or (B24) of Appendix B, the loading can be found at span
positions q = 0.931.,0.831, 0.556, end 0.195. -

Roll& moment: The damping--oil derivative for the sol~
tions of equations (12) or (13) is derived in Appendix B and
given by

Imp ( )[x PA—=. — E2 + 0.707
‘av 16 ‘av

Smnwlse center of uressure:
piessure on the & semlspan

l’lc.p.=

(*)

The equation giving center of
is shown in Appendix B to be

~ (0.163Gz + 0.248& + 0.430c@

1.

() (1
(16)

c1c
0.082 —

Clc
+ o.i2.4 —

()

C2c

c2cav 1 c2cav
+ o.215 —

c2cav 9

5. Wduced dr~ 5 induced drag is derived in Appendti B

and given by

~cl)i ( )[II M m (Gl +&)—. .-G G12+G2=+G3= -T+ 1 (17)
Kav

Aerodynamic characteristics due to aileron deflection.- The solu-
tions for the aerodynamic effects due to ailerons wild.be found for three
different spans of outboard and ~oard ailerons. Cross plots of these
data protide curves for arbitrary aileron spans.

1. Simultaneous loading equations: The IVn values are
obtained fkom figure 1 and table I with valuks of HV
given by equations (3) or (5).

—.. . ...—..-. ———- .——.
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(a) Deflected outboard ailerons: The aileron spans measured
from the wing tip tioard are given by Va. me s~t~eous
solution for antisymetric spanwise loadhg due to deflection
of any of the three folluwlng aileron spans can be obtained
from the appropriate set of the following equations:

Case T
0.1.69

1.003

.017

.006

II

0.444

0.971-

.996

.014

0.80’5

0.998

.991

.978

where G= =Gn/5.

(b) Deflected inboard ailerons: The aileron SpmS measured
from the winR midspan outboard sre given by q.. The
stml.taneous-solutionfor antisymetric spanwi;e loading
due to deflection of smy of the three following aileron

T

spans can be obtained from the appropriate set of the follow-
& equations:

Iv

0.556

0.044

-.017

1.087

where Gn = Gn/5.

v
0.831

0.013

.961

1.095

QI

1.000

1.016

●979

1.101

= P1lE1 + P1X2 + ?&&

= P21& + P2Z2 + P23E3

= P8& + P~=~2 + Ps3~3

(19)

.,

.-. -—r
-—

.
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2. Loading distribution:
due to various aileron

The spanwise loading distributions
configurations include:

(a) I?ull-wing-cherd ailerons: The loading is lmown to be
zero at ~ = O and 1, and is detemined at three inter-
mediate span stations. With equation (C13) and tables c6,
Bl, and C7, the loading can be found at span stations
g = 0.981~ 0.831, 0.556, and 0.195 for each of the aileron
spans considered. With these given points emd the tiowledge
tl@ the slope of the loading-distribution curve is theo-
retically infimite at the point of angl~f~ttack discok
thuity (aileron spanwise end), the loading distribution can
be faired.

(b) Constant fraction of w&g% herd ailerons: The spanwise
loading of constant fraction of wing-chord ailerons is equal ‘
to the product of the loading due to full~hord ailerons
and the effective change of angle of attack with aileron
sn@e,7 da/d8. The factor da/d5 is a function of the “
ratio of aileron chord to wing chord t = ca/c. The change
of section angle of attack with aileron angle da/d8 is
“presented h figqre 3, which is reproduced from figure 18 of
reference 7.

Although figure 3 taken from reference 7 limits the lhch
number range to Wch numbers less than 0.2, this limitation
is believed to he unwarranted since theory tidicates that
da/db is unaffected by compressibility for the tw~
dimensional wing. However, as indicated in reference 6,
da/db is strongly affected by low aspect ratio and will
change appreciably if the parameter PA becomes nmch less
th&n two3 hence,the values of da/d6 from figure 3 apyear
to be valid for 9A>2.

.

(c) Arbitrary spanwise distribution of aileron chord: The
aileron can be divided into several spans with constant
da/db, then the total loading is the sum of the products of
the full+rhg-chord loading of each span and its respective
da/d5.

7= using da/d5 here, it should be noted that the assumption is made
that the effective airfoil section is taken as being perallel to the
plsne of symmtry snd that the section approaches a two-dimensional
section. The validity of this assumption can be questioned; however,
limited checks with experiment show it to be at least approximately
correct.

—.....—.— - —-— —..— . - -- -—---—.— -- ,.- —— >... - -—— — -
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\

3. Rolling moment: Th6 rolling moment can be”found for the
following aileron configurateions:

,

(a) ~ l~mwhord~i lerop.s: The spanwise loading due to
aileron deflection cannot be integated with sufficient
accuracy with eqution (15). lh Appendix C, a similar
titegration formula is developed that a~lies to each given
aileron span. Equation (C1O) and table C5 give

(20)

where for each of the cases of equations (18) and (19) the
~ values are given by

.

Case I II III Iv v VI

hz 0.140 0 .i3g .0.138 0.146 0.141° 0.140

ha ●199 .196 .196 .200 .197 .198

h= .145 .139 .138 .140 ..139 .146

.

. (b) @ns tant fraction of wing-cherd ailerons: I?orconstant
fkaction of ~hwd ailerons with aileron au@e measured
parallel to the plane of symmetry, the aileron effectiveness
is given by

.

()

%~ ~ ~
—= —
R db Uav

(21)
av

.

.

(C) Arbitrary S- wise distribution of aileron chord: The
deflection of ailerons for which t varies spsnwise on the
wing can be considered as an equivalent win@wist distrib~
tion. The effective antisymmetric twist of the wing is
given %y

.

(22)

. .— —- -
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. 4.

5.

where da/d5 is now a function of spcmtise position. The
antisymmetric angle-of-ttack distribution given by equation
(22) can be divided into sp~wise steps of constant singleof
attack and the total rolling moment can be found by the
summtion of the rolling moment due to each spanwise step.
The rolling moments of the spanwise steps sre obtained from
a curve of rolliqpnoment coefficient 13Cz5/Kav as a

f?nzctionof unit antisymetric angle of attack from the wing
root outboard. This step method is the procedure used in
reference 1.

A curve of jilCla/~v as a function of unit &tisymetric

angle of attack from the wing root outboard can be obtained
from the solutions of equation (19) for the cases IV, V, and ‘
VI. An additional point canbe obtained from the solution
of case III of eqwation (18), appl~ the relations (dis–
cussed later) existing between inboard and outboard ailerons.

.

The rolling mcment due to the twist givenby equation (22)
can be obtained, by a mthod other than the step mthod, from
the integral given by

(23)

which canbe integrated numerically by taking the graphical
slopes Of @JZb/Kav which is a function of extent of unit

antisymmetric ale of attack from the wing root outboard.

Spanwise center of pressure and induced drag: Spanwise center
of pressure and induced+lrag integration formulas for loadhg
due to ailerons are not given; however, equations (16) and
(17) can give approximate integrations of the loading to
obtain center of pressure and induced drag.

Additional considerations:

(a) Relation between aerodynamicc characteristics for outboard
and inboard ailerons: The spanwise loading distributions d~
to outboard and inboard ailerons bear a simple relation to
each other. Since loading is linearly prop&tional to ~le
of attack, loadings are directly additive. Then, for
outboard and inboard ailerons with the spanwise ends of the
ailerons at the same span station,

.— —. ---- ... . ..——— .—..————. -— -—-——— ---- -———— ————— .--———-
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.

Ta =1–q
inboard aoutboard

}

(24)

J
These relations do not apply for Tc.y. and CDi since
these characteristics are not linearly proportional to
loading.

(b) Differential aileron angles: The effect of a differed-
tial between aileron angles canbe taken into account by
considering the cl~ of each wing panel as on-f the

antisymmetric results of equations (20), (21), or (23). The
total wing rolling moment is then the sum of the products of
C~8/2 given by equations (20), (~), or (23) and the angle
of deflection of each aileron. Although the total rolling
moment csm be found by this procedure, the spmwise loadtig
distribution canbe found only approximately%y the products
of the antisymnetric unit loading G/15 and the deflection .

of each aileron. However, the loading distribution so found ~
will be quite accurate since this procedure neglects only
the small change due to the induced effects of the differeh

.

tially different opposite wing panels.

(c) Aileron angles measured perpendicular to the hinge line:

The relationship between aileron sngle measured perp&dicular
to the aileron hinge line and that &asured parfilel to the
plane of symmetry is given by

where

~ sweep angle of the aileron hinge line

g angle measured perpendicular to the hinge line

“(25)

For constant fraction of wing-chord ailerons on straight–
tapered wings, At is given by”

.

.

———. — ...._ .— _ —. ___ _ . -—. .-
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.

The
sum

For

4(0 .7>- ) l-hhn~ =t=Ac/’ – ~
()
m

(26)

where t is the fraction of wing-chord aileron measured
from the wing trailing edge.

Aero@namic characteristics due to sideslip of wings with dihedral.–
totsl antisymetric loading due to sideslip canbe considered as the
of that due to dihedral.angle end that due to zero dihedral angle.
the unswept wing, the rolling mo~nt due to sideslip for zero

dihedral mgle is generally considered negligible; however, for the
swept wing, this effect can be appreciable. ti the present report,only
that part due to dihedral ez@e will be considered for the swept and
nonswept wings.

1. Simultaneous loading equations: me p~n values are
bt dfr fi landt able I with values of Hv given
& :::tio#(3)%(5) .

The sti_taueous equations resulting _~om the substitution
Ofb= ~r (see eq~tion (n)) @ G =Gl~r tiequtiom
(18) and (19) are applicable in the
effects of unit outboard or tiboard
span of the ailerons considered.

determ&ation of the
dihedral angle over the

2. Rolllng moment: The rolling moment
angle distributions include:

due to various dihedral

(a) Constant spanwise dihedral angle: For dihedral angle
constent for the entire wing semispan, the loading is iven

hby the solution of case VI in equation (19) for ~ = G B
&d the rolling moment fron equation (20) becomes

~–.PA o ~.--( .1 .+o.19@2+o.lti=3)
a

(27)

(b)Gul.led_w@. For the gulled wing,
(19) for G = Gfir gives the loading,
moment from equation (20) becomes

solutions of equation
and the rolling

~; = $ (M% + hz& + h&)
av av

A plot Of
extent of

the results of cases IV, V, and VI gives the
unit dihedral angle from the wing root outbo~d.

. . .. —-— . ..-. —.-. —.—-— - -.-.—— -. —- . ..-. .-— — -—-—.- J
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Then, for a @led
sum of products of
the rollingaoment
sections.

w@, the total rolling moment equals the
dihedral angle of each span section sad
contribution of the respective span

(c) Tar;able spsmise dihedral angle: If r varies spanwise,
the rolling qoment can be.obtained by integration as in
equ@ion (23). The integral becoms

d(Pcz–/~avI’)
where

dq
is the slo~ of the curve described in

part (b) above.

●

Solution for Straight~pered Wings

C!hartsof aerodynamic characteristics for straight-ta~red wings can
be presented in terms of geometric, compressibility, and average section
lift-&rv~lope parameters. These chsrts provide a ready means of
obtainhg data directly.

Aerodynamicc characteristics due to rolling.— The application of
equation (12) for a constant value of section Mft-curve Slopee prwides ‘,
the spanwise loadings at span stations 0.383, 0.707, and 0.924 which are
presented h figure 4 for a wide range of plan forms. The interpolation
formula of equation (B24) will give values of loading due to rolling at
span stations other than those presented. With equation (15),the

_@-~ro~ coefficients ~CZP/~av c~be obta~ed ~ are presented
in figure ‘jfor a wide range of plan forms.

%!hroughout the figures, Kav is the constant spanwise section lift–
curve slope or the average of a small variation. For large spanwise
variations of K that follow the function given by equation (Bll)
developed in Appedix B, the parameters pA/Kav and k can be replaced

by the parameters ~ @ ~h, respectively. For lerge
(KR+K@)/(l+h) KR

spanwise variations of K that do not follow”the curve of equation
(Bll), the simultaneous equations for the general solution can be
solved for arbitrary distributions of K. The HV values can be
obtained from figure 2.

.

.

—
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Aerodynamicc characteristics due to aileron deflection.- The appli–
cation of equation (19), case III of equation (18), and equation <20)

provide aileron effectiveness in the coefficient form pCZ5/Kav for
several aileron spmw. h figure 6, ~Clb/~av is plotted against extent

of unit antisynmtric ~le of attack from the wing semispan root
outboard for a range of wing parameters.

As presented, figure 6 gives directly the effectiveness of full–
~-chord inboard ailerons for aileron spsns measured from the plane of
symmetry outboard. The effectiveness of fti-wing<hord outboard ailer–
ons for aileron spans measured from the wing tip inboard is given by
figure 6 directly by the relations of equation (24). For full=wing-
chord ailerons located arbitrarily on the wing semispenl the aileron
effectiveness can be obtained directly from figure 6 as indicated in
following example sketch.

the

.
I /-___ .--L4

With the full-wing+hord values giveriabove, the effectiveness of
constant fraction of wing-chord ailerons or ailerons of arbitrary spanwise
chord distribution can be found through use of equations (21) or (23) with
the da/d5 values of figure 3.

Aerodynamic characteristics due to sideslip of wings ~th dihedral.–

The application of equation (19), case III of equation (18), but with
8 = ~r, d ~ = G/Fr, aud the use of equation (28) provides rolling
moments due to dihedral angle for the wing in sideslip. These rolling
moments are given in the coefficient form PCZ~/~vI’ which is the same
function of q as $Cl /~av

?

and is presented with PCZb/Kav in figure 6.
Figure 6 with equation 29) will provide the rolling moment due to
sideslip for any symmetric spemwise distribution of dihedral angle.

For dihedral emgle constant spanwise~ the rolling moment is givenby
the value at q =1 in figure 6. These values for constant spauwise
dihedral angle sre presented in figure 7 as a function of aspect ratio
for various values of sweep angle and taper ratio.

—... .—. .— - —.— ..- —-——- ——+ ------— ——- --—-—. -J
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Effects of pl~formperameters on aerodynamic characteristics for
straight-tapred w5ngs are shown by plots against the various parameters.
Compressibility is discussed and formulas given for a rsmge of plau forms
at sonic
indicate

The
forms is
figure 4

speeds. Theoretical consideratio& and experime&al comparisons
the order of reliability of the present theoretical results.

Straight~apered Wings

spamise loadtig distribution due to rolling
presented in figure 8. These curves exe the

for several plan
result of applying

and the loading interpolation formula of Appendix B. The -

~c.p.

()

Czc
loading coefficient is given as to make the total.

(~C.p.)A~ Czcav

loading on the semispan constant and’thus show more clearly the changes
of distribution due to sweep and tapr ratio. Figure 8 shows large
changes jn loading distribution for the zero tapered wbg. The effects
of sweep me generally as expected, namely, that sweepback shifts the
10X outboard.

Effects of plan form on the rolltng moment due to rolling is shown
from cross plots of figure 5 which are presented in figures 9 and 10.
For higher aspect ratio, figures 4, 9, and 10 show the mrked lowering
of rolling moment due to sweep. Figure 9 indicates that for low aspect
ratio, the rolling moment becomm essentially tidependent of sweep and
taper. The taper effects on rolling moment as seen h figure 10 are
small except for values of taper ratio less than 0.25.

Typical spsmwise loadtng distributions due to full-wing-chord
aileron deflection are shown in figure 11. These curves were faired
with the aid of the loading interpolation function of Appendix C and,
at the aileron spanwise end, care was taken to make the slope large.

Wing geometry effects on aileron effectiveness for full-chord
outboard partial-pan ailerons (with aileron angle measured perallel to
the plane of symmetry) are given in figure 12. The geometry eff6cts on
13C2/KaT- are similar to those on the dsmping-h-roll coefficient. Com-

?par son of figure I-2(a)with figure 9 shows that CZb approaches the
zermspect—ratio value in the same tier as does CZ . Figwe 13 gives
comparative effectiveness of inboard sad outboard aile~ons for swept
wings. As sweep increases, the difference of effectiveness between
inboard and outboard ailerons decreases showing that ixiboardailerons
for highly swept~ack wings approach the effectiveness of outboard

.

—. —————— .—..__ . . .
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ailerons. Since da/db becomes large rapidly at small values of t
(fig. 3), then, for a given aileron ~ea, narrow full-span ailerons for
swept~ack wings may be more desirable than larger-chord outboard
ailerons. The relative effects of figures 12 and 13 apply equally well
for constant fraction of chord ailerons,since the data would differ only
by a constant factor duld~.

. Compressibility

Rrom the three-dimensional linearized~ompressible-flow eqution,
it oanbe shown that the effects of comyessibility will be properly
taken into account if the longitudinal components of a ting plan form are
inoreased by the factor 1/$● Or, alternatively, if the linearized com-
pressible flow equationbe divided through by p2, then the lateml and
vertical components of a plan form are decreased by the factor ~. In
both cases, the incompressible local lift is increased by the factor l/j3
and the compressible local lift coefficient canbe written as the “
parameter pcz.

With these relations lamwn, an incompressible theory canbe made
into a cmqpressible theory subject to the limitations of the linearized
compressible flow equation. The geometric parameters of a wing are -

simply substituted by ~A,A~= tan= ~and ~b. With 10Cd lift

coefficient given by ~c2, the dimensionless loading becomes

G
flczc Czc

‘%=-x” The whg-chord distribution remains unaltered.

The sonic speed results of’reference 6 canbe used as a limit point
in the present theory for a curve of the variation of antisymmetric
aerodynamic characteristics with Mach nuuiber.” The following equations
apply at the speed of sound to plan forms with all potits of the
trailing edge at or behind the upstremn line of maximum wing spsm:

c1 =%
P

For outboard ailerons,

C28 +n s e, wb~ ~a=l–c08e

For inboard ailerons,

30), where ~a –CZ5 =: (l+in – cos e

...— -.._—_—_ -.—. ..—— --—._ _____ . . _____ .——
d
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Reference 6 shows that aileron effectiveness at the speed of sound is
independent of the chordwise
vialedthe hinge line remains

Accuracy of the.

location of the aileron hinge line,pr-
ahead of ail.points of the trailing edge.

Seven%oint Solution for Ailerons

.

The prediction of aileron effectiveness for given aileron spans
with ~ twist determined by zero+spect=ratio’ theory at only seven span
points to satis~ the boundary conditions has been theoretically shown to
be sufficientby comparing results with the computation of a typical 3.5
aspect ratio, 45° swept wing with 15 span potits satisf@ng the boundary’
conditions. The process of ftiing aileron spans for the l~oint method
was the same as that in Appendix C. The curves showing the variation of
CZ5 .with aileron span for the 7– and l~otit computations were identical.

The solution for the angle+f-attack distribution that includes a dis- “
continuity can be compared with the solution for the centinuous angl~f-
attack distribtiion by considering an aileron such that the sngle–of–
attack distribution is equivalent to that of the rolling wing. The d.amp-
ing-in-oll coefficient then can be found by use of equation (23) which
reduces to the form

.

f

1 dCz5
Cl= a— dq

dq
0

()pbfor a=–z , and integrating by parts

n“

f

1
. Czp = C25 q – m%== “

o

This relation states that CZP is equal *O the area between a curve of

figure 6 and the line of CZ8 for q = 1. The c’in-vesof figure 6 were
found by the sfmplified lifting-surface theory with antisymnetric twist
determined by zer~spectiatio theory. The valws of Czp obtained in
this manner from figure 6 were identical to the Clp values given by
simplified lifting-surface theory for centinuous linear antisymnetric-
twist distribution.

As further theoretical check, the values of rolling moment due to
constant spanwise dihedral angle are obtained from l~otit cmgputations
in reference 5 for taper ratio equal to one, with which the present
theory for the 7~oint method is in exact agreement.

.

.

—. — —. — — —-— -.
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Compaison of Theoretical”and Experimental Results

The electr~guetic addloa method of reference 8 provides dsmp@–
in-roll.coefficients for an aspect-ratio range of unswept, tapered wings.
The results of the present theory and those of reference 8 are compsred
in figure 14. Except for the taper ratio effects on Qp the comparison
is good. The rounded–wing-tip values of Clp given by NACA Rep. 635

(reference 1) are included in figure 14. Stice rounded wing tips gener–
ally give values of Clp about 6 percent lower than straight wing tips,
the values of NACA Rep. 635 appear to be a~reciably too high for lower-
aspectiatio wings. The present theory emd the theory of reference 8
approach the value given by the zero-aspect-ratio theory of reference 6
quite satisfactorily. The results of the present theory maybe further
assessed by the comparison with the results of low-speed experiment as
‘given in figure 15 for the range of plan forms presented. For further
experimental verification of the accuracy with which CZP can be deter-
mined by the present theory, the reader is referred to reference 5 which
s~ports the theory as well or better than figure 15 of the present report.

The loading distributions due to rolling as given by the present
theory are compared in figure 16 with low+peed experimental results for
a range of swept wings. The sweep angle seems to have considerably more
influence on load@ distribution as given by experiment than the theory
indicates. The experimental pressure data, however, were very erratic
and no firm conclusion can be made.

Experimental values of rollhg effectiveness due to aileron deflec–
tion are compared with theoretically predicted values in a correlation
diagram given by figure 17. Included are the results of a wide range of
plan forms whichdo not vary consistently with any geometric parameter or
aileron configuration. Sketches of the plan forms and ailerons sre drawn
about the points of correlation. The theory makes use of the curve of
figure 3 giving du/db for a sealed~ap aileron over a range of deflection
of *loo. Experimental results for aileron deflections greater than 15°
measured perpendicular to the hinge line were not included. The correla–
tion points of figure 17 scatter appreciably; however, the mean line of
the point~ does approximate the line of perfect correlation.

Figure 17 does not account for effective plan-form change due to
dajd~. Only the effectiveness of the lowaspect-ratio triangular wing of
figure 17 is exceedingly in error,which is the result of neglecting plan-
form change.

r

The plan-form change due to @db can, in part, be considered anal–
ogous to that due to section lift-curv~slope c-e. Thus, the total
section lift of a wing, the chord of which is reduced by da/db and which
is at an angle of attack b, is equal to the lift of the wimgaileron
section for which the aileron only is deflected ,atthe angle 5. This

—.—- -, -—---—.----—-—--—-— -——— -—— -— ———-— ---—_ ..— ~-..
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change in plan form, unlike the section lift-curve~lope change for which
the chordwise loading rendns constant, does not account for a lerge
change W chordwise loading. If the lifting line is considered to be at
the chordwise center of pressure, then, for partial.+dng-span ailerons,
the lifting line is in effect broken at the aileron spanwise end and the
present theory becomes invalid. For the case of fdl+ing-span ailerons,
the lifting line in effeet remains unbroken and lies along the center of
chordwise pressure. For this case the wing chord can be reduced by du/d8
to account for plan-form change; however, although in the limit of zero
aspect ratio ths results are the same as those of reference 6, this pro-
cedure does not with sufficient acc~acy account for the chordwise loading
shiftiug aft at intermediate aspect ratios. For control surfaces, the .
effective plan-form change due to du/d8 fs appreciable for the low-
aspect~atio whgs such that in the limit of zero aspect ratio the span-
wise loading is independent of the ratio of aileron chord to wing chord
(reference 6). However, for moderate as~ct ratios, du/d5 can be used
without accounting for plan-form changes as comparison with experiment
indicates.

Experimental values of Cz~/I’ are not compered with the present

theory since reference

shown to
determination

5 gives “implesupport of the theory.

coI?mw REMARKS .

of antisymmtric load@ for arbitrary wings is
be easilv obtained by the”solution of three simultaneous eaua-

tions. The coefficients of the simultaneous equations are presented in
charts of paramters that include wing geometry, compressibility,and
section lift-curve S1OP as arbitrary quantities. Thus the loading for
an arbitrary antisynmetric angl~f~ttack distribtiion can be simply
found once ths angl~f+drkack distribtiion is chosen.

For the important cases”of antimtric loading, roll, and aileron
d.eflection, the .mgb-of-ttack distribution is given and the simultaneous
equations are formd. Loading for these cases can be found by s@l.y
obtaining from charts the coefficients corresponding to the ~ geometry,
Mach number, and lift-curve slope, inserting in the appropriate equations
and solving.

hrtegration formulas for the loading distributions are given which
enable the aerodynamic coefficients CZ sad C25 to be found. The

rolling mcmsnt due to sideslip of a w& with dihedral is shown to be
equivalent to that of aileron deflection end a procedure for determining
its value is given. .

For the special case of straight+taperedwings, the loading distri-
butions and values of Cz S31a c28’ are given h the chart form for a

.,

P
range of ldng plan forms.
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Experimental.and theoretical verification of the theory is shown to
be good. The theory is applicable for krge aerodynamic angles,provided
the flow remains unseparated. The compressibility considerations are
reliable to the speed of sound - ject to the limitations of the linear-
ized compressible-flow equation.

Ams Aeronautical Laboratory,
Nationel Advisory Committee

Moffett Field, Calif.,

EQ’UMTIONSTOR THE

IKromNACA
by solution of

‘V =(.)T
v

where

G
I&=—
bV

b*v .= 2bvV

for Aeronautics.
Dec. 22, 1949. -

APPENDIX A

DmmwRwuon OF ANTISamMETmc LOADING

Unsymmetric Loading

‘IN 1476 (reference 2), the aerodynamic load~ is obtained
the linear simultaneous equations

mr
.b+Fv Gv _ L b*vnh> v =1,2, . ..m

n=l

indicates the value for .n= V is not sumned,)

()b+—
Cv ~w

b Vv end b~ =e coefficients independent of plan form.

M
-1 L(V,O) fno + L(VYM+l) ‘n,M+l

~ =—
[

+
1 L(v>w)fW

‘n 2(M+1) 2 V=l
1

(Al)

(:)

(A3)

(A4)

- —-— -—. ——.-—.—.—. .....—. —.— .- --- - .



where

‘w sre coefficients independent

The L(v,P) functions, which

L(v,ll), =

and

n)
02

of plan form.

can have ~V negative to find unsymmetricalloading, are given by)

/[14+) t~A( I,VI-T,)I’+(+J2(VV+)2
-1

1+(+)(Ivvl - I@t~A

L( VW) =
) tan A ( bvl + iTp)12+(&)2(TI@ip)2_~

2 ten AJ’5+ Iqv ! (bq) tan N +(:vfqv’

(&’)(Vv+ip)

1

where

spanwise position at

spanwise position of.

1

which downwash is computed

incrementalloading at the one~uarter-chord line.

(w)

la



.
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The above equations tivolve computations over the &tire wing.
However, if the loading is assumed to be symmetric or antisymnetric,the
computations can be”reduced to less than halJ?the work. The case of
_tric load@ is tivelomd h reference 2 and the antisymmetric case
iS developed in the following section.”

Antisymmetric Loading

For antisymmetric loading, the
the sam magnitude and distribution4

av = -%)-l-v

loading on each side of the wI@ has
but with opposite sign, or -

1 (A6)

Gv = -Gm+z_v, or Gn = ~m+xa
J

Equation (Al) can then be written as

DA

2,

Ix
av = (b*v A*~+=_ ~ )Gv - b*n~*

)
v, m-l-la %

n=l

(A7)

where ths summation is only to *1
—, since Gwl
2

= O for antisymmetric

loading.
2

With equations (A2) and (A3), equation (A7) becoms “

%= [( ) 12 bw =b~,til_~ + (b+)kw-gv,w=+)Gv -

.

m-1

1[(
t

2 bh-v ~+=a
Y

rl=l

(A8)

.

_______ .—__——--- .. ...—. ..—---- .-
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Iiow, from equation (A4)

where

[

L(vjO) (fnO-fMl~.O) +
~-v,ml- = & -

2

NACA TN 2140
.

w

Rrom equation (A9),

thOnj using equation

fn+l-fm+l+,J.1

& =f
Ww

(Ale)

m

&+ w=&
I

pl Cos

.~==1

can be defined as

-f===, ~

. . m
2=—

1
~1 COB

Iu+l
~1=1/

and, since the terms of the smmuation for odd W1 vsmish,

I’llsin l.MPnCos Mp (All)

.

“

U1-~,4, 6... even

——— . . . ..—___ —y
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From equation (All),

Conibiningequation (A9)

then

f++nV = ‘n,M+lw

with (AM) and defining

ly

mm=% 1[ 1
L(V,I.L)+ L(v,M+lw) ,fiW

2(M+1)
p=o

31

(Au)

where for p = O and
M+l

nv is equal to W the values given by—J e
2

equation (AU) in order that the products can be fitted into tbe summa-
tion. With equation (A13), equation (A8) can be written as

m-1

% = (2CV + b~.&w)Gv – I‘ ‘ (2~n – b= @vn)Gn (A14)

n.1

v
m-l

s 1,2,3,..0~

where

c~ = % – %,m+hJ

~n = bm - %J,m+la

From reference 2,

sin (pn

[

l-(-lr’

‘n =(Cos Qn – Cos TV)’ 2(m+l) 1
which gives zero values for bVn for even (n-Y) v~ues. Thenj since
m is odd,

b o
V,m+l+ =

and.

Cv = bW

— —.—— — ——. _._— . ...
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It should be noted that L(V,V) simplifies somewhat for the anti-
symmetrically loaded wing since q now is only yositive in equation

.

(A5). If Oil@ positive ValUeS Of if are used, then equation’(A5) can
be written as \

= L(V,~) + L(v,M+lw)

In summary, the foregoing analysis for the antis’ymnetrically
wing gives

F

q.
I

PW Gn

n=l

v = 1,2,3,’... ~

where

‘w = 2bvv + b— @W for n=V
Cv

cm =

bvv =

.

bvn =

ti~v =

gm .

m+l

4 sin Tv

sin ~
[

l-(-1)~
(Cos ~ - 2(111+1)1Cos @2 ,

@w for n=v

M+l

1

f
L*VV f+w

2(M+1) ~+

Ml=even

—. ..— —

loaded ‘

(&L6)

.<

.

.

.
..
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Z!kforp=T‘M+z=2
M-I-1

n—
2

For M=m, fiW simplifies to

f*
w=

f*no =

[ Jpk=c-l’:)n+

2(–l)nw sin 2qn’

Cos 2gn - Cos 29

~ for P=O
2

L+ . I

w (b~~(T@@ {J }[l+(&)(llv-iTpl fN2+(bm)’(~+vr-1 +
.

1 {J[l+(b7#qv@anA]2+ (~)’(vvfiv)’ _~ +
(~)(rlv+-iv) l+2(b—)qV tan A }

Cv

A

TI~ = cos Qv where q = ~
m+l

Tp
~Yt

= cos Cpvwhere V = —
P M+l

For a discussion of the
of velues of M smd m, see
tion is with M=m.

.

relative accuracies obtained for a choice
reference 9. The most favorable applica-

—. .— -- . . .. .. .—.—.- - _ . ..— .. —.- .— ——.+ .-. ———— ... . . .—_
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APPENDIX B .

DERIVATION OF RELATIONS USED

With Appendti A,

IN 5 METHOD

Application of Append& A

the antisymmetrical loading on a plan form for any
antisynm&rical distribution of av csn be”found. The principal work
h the computations is to obtati the coefficients of the simultaneous
equations (AI-5). These coefficients can be presented in charts for the
complete range of @ometric plan-form parameters tito which are intro-
duced the effects of compressibility and section lift-curve slope. With
the loading dtieto rolling known, the coefficients and derivatives sre
obtained by integration formulas.

Section lift-curve-slope effect.— For a two-dimensional wing with
the loaded line at the quarter-chord position, the position x aft of
the loaded line where the induced downwash equals the angle-of attack of
the wing can be obtained by the Biot Savart Law as

. rc Czcv
w.— where rc = —

21Tx 2
or

w clc

;= G=”
or

dcz 4=
—=—
da ‘c

. .

then

where “dcZ/da is the section lift-curve slope. Two-dimensional section

compressibility effects that do not follow the fisadtl-Glauert rule can be
given considerationby

Mach nunber to 2Yc/$.
at a given lkch nmiber

taking the ratio of (dcZ/da)comressfble at a given

Let K be the ratio of the section lift-curve slope
to 2Yc/p or (dC@)coqressib~e = 2YfK/p,then

x= K(c/2)

Then the induced angle, K (c/2) aft of the loaded line, is equal to the
angle of attack of the wing. For K = 1, this is at the three-qusrter- . “
chord line. For section lift-xrve slope less than 2x, K is less than
one snd the downwash is equal to the singleof attack at some point between .
the one-qusrter– and three-quarter-herd lin6.

— — ———— .—— . ———— —_— -———-——-
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To take into account the section lift-curve-slope variation in the
prePant theory, the downwash must be found at a distsnce tc(c/2)aft of
the ~o~ded line. From the formulas of the summation in Appendix A, .
b/cV should be taken as b/~vcvJ where K~ is the ratio of section
lift-curve-slope for a given Mach nunber at span station V, to 211/p.

Derivation of parameters for pm.- The pm coefficients) as

defined by equation (AI-6)in Appendix A, depend on plan-form geometry in
the (b/c~)L*W functions on2.y,or p

r

is a function of b/cV and
sweep angle. As previously shown, b CV is slso a function of the spx
wise variation of section lift-curve-slope and is effectively equivalent
to b/Kvcv, where ICv is the ratio of section lift-curve slope fOr a .
given Mach nunher at span station v to 2ti/p● The pm coefficients
can be plotted against b/Kv~ with sweep angle as a parameter; however,
b/Kvcv will.vary from zero to very lerge values for a range of plan–
form geometry, and the plots become unwieldy. For a range of aspect
ratio, the values of b/Kv~ sre a maximum for the zero tapered wings
when ~v 20.5 (provided plan-form edges sre not concave) and a maximum
for the inversed~apered w’hgs for ~v <0.5. The ratio of b/~cv
for 7V>0.5 for any plan form to those of the zero tapered wing or
the ratio of b/Kvov for 7V<0.5 for my plan formto those of the .
inversed-tawzwdwing gives a geomtric parameter for anyplen form that
has maximum values that depend only on aspect ratio.

The chord distribution for straight-taperedwings is givenby

b A(l+A)

G = 2 [1- j~v](l–A)]
(Bl)

Then, for X= O,

b 1
(B2) “

Acv 2(1- Iqvl)

and for ~=1.5

b 5—= (B3)
ACV 2(2+ ITv])

!12heratio of b/~~v to equations (B2) and (B3) gives, respectively,
a geometric parameter

b#Vcv

(b/Acv)~=lo5 ()bZ@’+llv) —

5
for 0< TV <0.5

‘Vcv 1
.

——.—..—. ———.--— —— .—. — —---—— —--— — ~—— —. — - —
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Let HV be defined as two-fifths times the values of equation (~)
(the tiaction hm-fifths is introduced to give HV the approximate

to simplify plotting procedures), then add~ effects of
~~g~s~$b~ (see Discussion section)

For tapered wings,
.

HV =

HV
()

.dV $b

‘@v

.

4(1-VV)
dv=~.’

4(2+qv)=—
25

Hv simplifies to

for 0.5<7,V ‘1

()2(1-qV)(l+A) BA

5[1-VV(l-A) 1 ~ for 0.5~rIV<l

2(2+l@(l+x)

25[1–VV(l–X)1 ()13A— for 0<qV<0.5
icv

(B5)

.

1“(B6)

Plots of pm agatit
~ coefficients for wings
Up’to 10 or 12.

HV inthe rangeof HV=O to4w~give
of any chord distribution for aspect ratios

Linear asymptotes of pvn.– For large values of ~, the pvn

functions become linearly proportional to Hv. Since this linear char-
acteristic appears at relatively low values of HV, the simply linear
relation between pvn ~ Hv is quite usable.

.-

.

.__— _.. ——— ——-— .-
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The L*V= ~ction of Appe@ix A iS multiplied by b/cV @ the
product is linearized.

.

‘l-jl=l..ofor,<~

ten A

( 1 “1) A=- +— . Sti A –%ul–-
72-7 17fil ‘v a. 2

\

.

.

... for~=q

()

2 b _a=_
COB A CV ~

With the VdlleS of
the values of pm for
for m=7, the folloying

equation

+2 sin A
... for ;=0

?

(B7) m.ibstitutedtitoequation(A16)
arbitrary sweep amgle are obtained. Thus,
equation (B8) gives values for ~n as

(B7)

,

—.— f.._. - ..—. — — —————-———————- ---- -— -- -- ——— –-——- -
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(3.9282=1 =
)

~+ 1.026tan A H1 + 7.968
\

(Jo.o&2 1– )-1 + 0.0016 tm2 A

tan” A

(J0.034 1– 1 + 0.1717 t=aA

tan A )

(0.51P== —–
)

2.901tam A HI - 3.u8
cos A

(d0.034 1–
1 + 0.0016tan=A
tan A )

(a. 176
P~a = )

+ 1.026tsnA HI + 0.u29
COB A

(d0.014 1–
1 -I-0.0016 tan2A

tan A )

(J0.034 ‘--
1 + 0.1717tm2A
tan A )

P21 = ( )
~ + 0.334 taA~ -2.088 –

(

-1.494 sin A + 0.014 tan # +

(J).068 1-
1 + 0.0177tm2A
. tzm A ‘)

.

t l. O&) stnA – 0.034tsn g -

(J-0.096 1- 1 -t0.1717tm2A
tan A .)

-0.869 stiA + 0.082 tsn $ +

0.068 (’l– )1 + 0.0177 tsn=A
tan A

0.383 sin A- 0.018tsa $ -

.

0.088(l–A/1 + 0.0177 tm2A

tsn A )-
0.044

0.037
(J

l– 1 + 0.0886ta2A
tsn A )

+

(Jl– )1 + 0.0294 t=2A _

tan A

P -~ + 4.596 – 0.1%-6sin~.()~ tsn $ +22 = cos A

(d
O.= 1– )_o.044f-J tmA )-1 + ‘0.0177 tan*A 1 + 0.0294 tan2A

tan A

( )

1- A/1 + .0.0886tsn2A
b.125

tsn A

.

— -——— .- — — —. —.— ..—.. .— . . . . ____ _
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P
(

0.221
23 =

)
—-().53bt~A ~ -1.91.2 + 0.221 sim A+0.107t@–
cos A

(d
0.044 1–

~~A . )+0.018(1-d’+ :&:t~2A)+
1 + 0.0177 tan2A

(4

l– 1 + 0.00!36tm2 A
0.044 ,

tem A )

(-0.028p~l. —-
)

0.164tan A H3 + 0.149+ 0.324 Strlfj + 0.034 trm # -
cos A

,

+

(d0.197 1- 1 + 0.1993 tem2A

ten A )

[

0.136
P=—

)
+ 0.464 tsn A H~ – 1.570 —0.389 sti A -0.0,2 t~ ~ +

32 cos A

(d
0.231 1-

1 + 0.1717 t=2A
)+.0,2 ~-d t~A )1 + 0.1993 tm2A

tsn A

P
-(

0.628_— —
33 )

0.164 tanA H3 + 3.417 + 0.083 Si?lA+ 0.197 ten ~ –
, cos A

(d0.082 1-
‘~ A )+00163p-J1+0”:~:m2A)+1 + o.1717 tan-

(J0.034 1-
)

1 + 0.1993 tan2 A (B8)
ten A

.

Linear spsnwise distribution of (ICC~ /(KC)~v.– With the condition
that *he product of section lift-curve slope snd wing chord varies
linearly spanwise, then .

.

..————_____ _ ———. .. —.—..-. ———..—._ __ . ——. —.— —
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and equation (3) becomes .

1+(tCT/KR)X
HV = dv (j3AK)

{
2 l-v [1-(K##l

}

(B9)

where AK is the aspect ratio based on the wing chord equal to KC.
In equation (B9), HV is reduced to terms of two paramters. Expressions
of AK in terms of aspect ratio for straight-taperedwings and the dis-
tribu~ion of section lift<urve slope can be fo~d.

—

For straight-taperedwings

2b
A=

o@+k)

end since Kc is linear

then “

AK =
(KR+K;) /l+A

and equation (B9) becoms

[

PA

1

1+(KT/~)x

‘v = ‘v (~+t@J/l+x
2

{.
l-qv [1-(KT/@J

}

The distribution of K for straight~apered wings is

(B1O)

giveriby

(Bll)

Equation (B1O) is in terms of two parameters given by rL(&&l+h 1
Solutions for spanwise load@ in terms of these twoand (~/@.

parameters and A~ sre valid for the distributions of section lift-
curve slope given by equation (Bll). Equation (B1.1)indicates that at
L = 1, K~ is a linear function and at X = O, Kv is a constant.

— .—._ .—-— ---— .
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For vslues of k between O and 1, Kv is a curve in the region
between the lineer function and a constant.

Equation

nate given by

(tc#R)A.

(B1O) is given

the psrameter

by figrme 2 for In=7, but with the ordi–
Hv

.— and the abscissa by .
PA/[(KR+@/(l+~)]

For the case of linear distribution of (Kc)v and straight-
tapered wings for which the chord ad section lift-surve slope can be
specified h three psrametersj the loading and associated aerodynamic
characteristics can be presented for a r~e of the par~ters ~,

Integration of Antisynmetric Loading

Rolling+aoment coefficient snd derivatives.– Rolling+noment

ficient is given by

which, by an integration formula,

becomes

m
Y(PA=—

L

Gn Sill2Qn
4(m+l) n=

.

coef—

(B12)

(B13)

. I
.—— — . . . ..— —. — ..- —_z. —— ——_
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Since the loading is antisymetric> Gin+==O) a@
-Z-

m-1._
L

YC$A

1
G= sin an

2(m+l)

NACA TN 2140

n.1

For spanwise loading due to rolling, the loading is found as a
function of pb/2V, then equation (B14) divided by pb/2V gives

-1
T

13czp
YC$A I‘m” G

n.1

where
~ = G/(pb/ZV)-

sin 2qn (B15)

(B14)

The rolling moment due to ailerons will be found in Appendix C.

Tnduced drag.— ‘rhei@uced drag coefficient is, with equation (B13), ~
given by

(B16)

where

?

is one- the induced angle of the wing wake given by
equation A14) for Cv = ~, then for antis-tric load@

m-l

!(

T,
2YC$A

Pmi = ~ bvvGl,2– GV
:)

~n Gn s~ ~V

V=l n=l

where the prime indicates the value of n = v is not sumced.

Spanwise center of pressure.— The ,centerof ‘pressureon the wing

half panel is given by

J’

1
G~d~

o
%.po = ~

L
Ga~

..)

.
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The numerator
assumed,

m

G(q) =
I

pl=even

43

is equal to PCz/~A. If the Fourier series for loading is .

m

1’
pl=even

then

where ~=

u ~l=even

we the Fourier coefficients.

(B17)

.

Loading-due-tMolling function and interpolation table.– The
Fourier series that approximates the antisymmetric loading with only a
few terms is given by

The loading Gn

%=*” ~

.LJ

Vl=even

is determined at

%1 me @ven by

span positions of ~ = cos qn where

f

l-(

%=:
G(q)) Sill ~lqdq) (B19: I

0

With the quadrature formula of equation (B13), equation (B19) becomes,
for antisymmetric loading,

m-1

T

4—
%1=— Gn SillPlqn

m+l

n=l

. (B2(

—.. .—..___~— .. ..—..- .._ .— ...— —.— -————— ..—-——— --
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For m = 7, the ~= coefficients

NACA ti 2140

are equal.to (for even Vl)

GI )-c&++G=

Equation (B18) with (B21) can be arranged to give

\
(B21)

(G(g)=AQ Jz
sin2q+sti4q+—

‘1

sti6~ G1’+
22 2

)(B22)

With equation (B22) the loading due to rolling can be determined at any

span p6sition. titt~ q=~k=~ and tabulating the factors of Gn

as e~, an titerpolationtable may be obtained to determine
span station k.

loading at

TABLE Bl, ~

[m=7]

@ o.981 0.831 0.556 0.195

n l/2 3/2 5/2 7/2

1 0 ● 8155 0.5449 I-0.1622 0.1084

where

2 –.2706 .6533 .6533 –.2706

3 .1084 –.1622 .5449 .8155

(B23)

_— --— .—-. —. . . . ————...-
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Equation (B23)
ficient, thus

may be used for interpolation

45

of any form of loading coef-

(-) =&. (-)
k= n

‘-DETERMINATION

SPA.MWISE

wing

APPENDIX “c

\

OF ANTISYMMETRIC.WING TUIST FOR FINDING

LOADING DUE TO A13XROIVDEFLECTION

Twist for a Given Aileron Span

(B24)

The determinantion of loading for en angle-f-attack distribution
that contains a discontinuity by a method which satisfies the boundary
conditions at a finite number of points can be made by increasing tlm
nuniberof points until the solutions become sufficiently accurate. For
the ~thod as given in Appendix A, the nuaber of points that satisfy the
boundary conditions is given by m. For the large vslue of m required
for accurate remilts, the computations become exceedingly laborious; how-
ever, a procedure using a moderate value of m can be determined by use
of a low-aspctaatio theory with which a wing twist can be found that
duplicates the resuits of the discontinuous angleafattack distribution.

A theoretical but relatively simple method of finding spanwise load–
ing due to inboard and outboard ailerons for wings of low aspect ratio is
given by reference 6. In the present theory, as aspect ratio approaches
zero} @~ values of Appendix A become zero and the @Vn coefficients
given by equation (Q6) become constant or independent of plan-form shape
and equal to

% = “Yn

Pvv = 2bvv 1(cl)

These coefficients are given by the relations under equation (A15) sail

PVn c= be tabulated.

/

.— -- —.--. .-— ..— ——. —.- .—. .—— -—. ..— —.- ——.— ..— -—
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-T.Alm cl.– p~

[For m=7 and A=O]

NAC!ATN 23.40 “

-,

n 1 2

1 10.4524 + ● 0000

2 –3.6954 5.6568

3 0 + ●0000

3

0

-1.53o8

4.3296

With equation (A1.5),antisymetric loading can be found for zero~spect-
ratio wings. As a comment on the accuracy of the present theory for
m=7, the solution of eqution (A15), with the A=O pvn ‘valuesfor load-
ing due to rolling gave the same values at the three semispen stations as

(pb/2V) Sti 29
does reference 6, namely, G(q) . – ~

The zero-aspect-ratiotheory of reference 6 shows that all span
loading characteristics are independent of plan-form shape for zero
aspect ratio. This independence makes that theory ideal for obtaining
the boundary conditions of the present theory for zero aspect ratio,which
should app~ with the present theory for higher aspect ratios for which
plan-form shape has en effect on spsmwise loading. The boundary condi-
tions of the present theory are given by the antisynmetric values of av
in equation (A15). The problem is to find what antisynzmetrical.distribu-
tion of ~ is required for the present theory to duplicate the exact
load~ distribution given by reference 6 for a given aileron span.

The aileron spans are arbitrarily chosen for the present theory as
the Mea value of the spenwise trigonometric coordinate of the downwash
point at a section angle of attack equal to zero. For =7, three
aileron spans can be defined for both outboard @ inboard ailerons.
Let ~a be the aileron.span, and e the spanwise point of the end of
the aileron, then

~a=l- cos f3for outboard ailerons

.

~a = cos 6’for inboard ailerons .

.



is given

[

.
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For the present theory, the aileron spans defined we tabulated as fol-
10WS:

TABLE C2

Outboard Inboard
Y
Case I II III Iv v VI

e 31-C 5s 7s 5Yt 31t

z z m z z o

~a 0.1685 0.4444 0.8049 0.5556 0.8315 1.0000
*

For the aileron spans listed in.table C2, the exact spsm loading
distribution can be found from reference 6. With the ~ values listed
in table Cl and the exact values of Gl, @, and GS from reference 6,
equation (A15) gives the twist required for the present theory to give
the loading distribution for each case listed in table C2 or

The spanwise loading distribution from reference 6 for outboard ailerons
by

[

II
Sti ew

G(9)
-r 1

=* (cosq–cose) 2n sti~-

outboard -ZZ-

(COS (p+ cos 9) 2n

~os ew
T 1“”(C3)

—.–— .—-.. . — .——.- —--— —— — -. ——— .— .—. ——— — ---
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For the

L/j Jqa=I m -’
I
Cos q

For inboard ailerons, with the ssme value of 13

.

(C4)

(N=.)

With equations (C3), (C4), and (C5)y the .panti.e 10~@ Gl~ G2y
and Ga at span stations q = K/8, a/4, and 3Yc/8, or q = 0.9239>
0.7071, and 0.3827 can be tabulated for each of the cases given in table
C2 .

TABLE C3

$. Case I II Iv v VZ

G1 0.u36 0.1919 0.2316 0.0454 0●1237 0.2373
ii-
& .0500 .2e00 .3851 .UJ54 .3464 .3964
E-
G~

.0190 .1022 .3620 .2922 .3754 ‘.3944
E- L

The twist distribution required for each case is obtained with
equation (C2) and table C3, tabulatm

TABLE C4

Case I Is III Iv v ‘m
E
al

1.0029 0.9713 0.9979 0.0444 0.0M8 1.0157
Fr
%

.0174 .9957 .9913 –.0169 .9614 .9788
T
ga .0056 .0139 .9777 1.0868 1.0951 1.1007

With the thist distribution given by table C4, equation (A1.5)Cm be used -
to solve for spanwise loading due to ailerons for any of the six cases.

.

— .—
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Rolling Moment Due to Aileron Deflection

The rolding momnt is given by

49

For span loading due to ailerons, the loading distribution is distorted
sufficiently such that the quadrature formula given by equation (B13) is
not sufficiently accurate for m = 7 to integrate equation (c6). With
equation (B18)

.Cz=gfh (C7)

Expanding.equation (B18) for q= Ye/8,fi/4,and 3Yr/8j or obtainimg
Gl, Gz, and G3 in series of ass, the sum of the G*s gives

82 = ~(0.7071G1 + Gz + 0.7071G3) + al~ —ale+~o—~ (c8)

The higher harmonic coefficients can be put as factors of the ~. The
rolling+mme nt

c% =

coefficient becoms

A{w[1+‘a’’-a%a=)=)IG’ +

[

o.707111 ~ + (alA–als+ aso-ad G
T 1.2071G~ 1}

3 (C9)

When hn is defined as the coefficients of ~

Cz =A (h=G= +h42 +~Gs) (Clo)

The ratio of (a14 – ala + a~o – a-) to ~ can be evaluated by
the zero+spec~atio theory. It is expected this ratio till.not vary
appreciably with aspect ratio. Rrom reference 6, the loading in series
expansion gives for equqtion (B18)

.

_- .——- ——.—. .._. _— ——-— ——.—
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These high harmonic coefficients sre small, but are not negligible for
loading due to ailerons. The ~ are tabulated for each of the cases.

●

TABLE C5 ‘

h Case I II Iv Q VX

hl 0.1398 O.lwl 0.3-379 0.1462 0.1407 0.1402

& .1994 .1963 .1955 .2004 .1973 .1975

hs .14-46 .ly38 .ly32 .1400 .u~k .1397

.

Spanwise Ioadhg Distribution

The spanwise lmding distributions due to the twist distributions
of -bibleC4 are found at three span staticns, ad, stice these loadings
are not completely defined by a few terms of the assured loading series,
the velues of loading at other span stations cannot be found accurately
by direct use of equation fZ123)and table B1. For zero-aspeckatio
wings, the spanwise loading distribution due to aileron deflection is
given at all.spau stations by equation (C3). The loading distributim
for other than zero-aspec~at io wings will fluctuate about the value
given by equation (C3) h a manner similar to the manner that loading
due to rolling varies about the function sin 2 q of zer=spect+ratio
theory. Since the interpolation table of equation (B23) applies only to
10adi31f@that Vary ~Out the function Sill2 ~ the load~ due tO
aileron deflection can be divided by the ratio of equation (C3) to sin 2 ~ -
end the resulting loading will be a~oxhately given by sin ~. ‘

— ——— ——-——-—
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The zero-aspect-ratiovalues of equation (C3) can be tabulated as

ratios of
G(q)/5 . “Define
sin 2cp

Rn =
G(~)/b

sin 2%
(C1.z?)

.

The zero-aspect-atio values of Rn can be tabulated for each aileron-
span case considered.

TABLE c6.-Rn

Outboard Inboard

Case I II III Iv T VI

~a 0.1685 0.4444 0.&kg 0.5556 0.8315 1.0000n

1 0.1607 002714 0.3275 0.0642 0.1749 0.3358

2 ●0500 ●2M0 .3851 .1164 .3464 .3964

3 .0269 .1445 .5119 .4132 .5309 .5578

The interpolation

G*where ~ = ~

values of loading

series of equation (B23) becomes

em are given by table B1. With
km

at ~~ stations ~k = cos ~ are

0.981 1/2

.831 3/2

.556 5/2

. l% 7/2

(C13)

Rk tabulated,

obtained.

I II III Iv v VI

0.1738 0.2663 0.3162 0.0559 0.1484 0.3222

.D56 .2787 .3499 .0802 .2533 .3589

.0341 .2250 .4$65 .2424 .4225 .4566

.0233 .121J? .5304 .6363 .7343
● 7575

.- .. —.. — . .——. — _.— ..——-— — -—-—— -—-.-— ———— ——
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TABLE I.– AN’I’ISZMMETRICINFLUENCE COEFFIC-S, pm,
EEYOND THE SCOPE OT l?IGOIUZ1

tRm=-
w-=-t=-
H-a-=
w
2.4 –– 19●35

2.8 –- -–

3.2 -- ––

3.6 -- --

4.0 -- --

—- 1-—
——— —

+-+-
1——— —

15.01I14.78

16.48 16.25

-t

17.93 17.73

19.53 19.26

=-l-=
+3!2

P==

20 I 40 I 50160170175

—,— —- —- —- -- 14022

—— —- —— -– 15.23 17.95

—— —— —- 14.61 18.05 21..84

-— 14.69 15.93 18.36 23.86 29.34

15.23116.911 18.771 22.171 29.811 37.0$

16.96119.25 21.621 26.03 35.88 ––

18.68121.60124.46130.02! –– I -–

20.46 23.91 27.32 34.071 -- -–

22.27 26.22 30●20 38.24 –- -–

24.08 28.53 -- -– –- -–

25.86 30.84 –– –– –- ––

P
12

A +0 -40 +20 0 20 40 50 60 70 ~

0.6 -1.17 -- –– –– -– –- –- –– –– -6.59

.8 –.25 –loll –– a -– –– -– -– –- -6.51 -8.17

1.2 1.70 .26 _l*33 –– –– –- –– -6.29 4.71 J3.67

1.6 3.64 1.68 –.52 –– –– “- Y– -7.58–11.01–XL.18

2.0 3.61 3*U .28 –– –– I –- -6.66 -8.90–13.23–14.19

2.iL -- 4.62 1.08 –1.22 –- –- –7.50–10.24–15.54 -–

2.8 -- -– 1.86 –.87 –– –- 4.35 –J.l.57 –- -–
3.2 -- -– 2.61 -.51 –– -6.70 +.21 -x2.92 –- -–

3.6 -- -– 3.37 -.16 –– -7020 –lo .09 –– –– -–

4.0 –- -– –– .18 -- -7.72 –lo.95 –– –- -–

Ws@

----- .—..— .—..- .—..— .——.————. . ..” —— _ —- _.. — .— —---- —— —-—
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.

(u’ A = o.

A’%
Figure 5.- V’riotion of damping-in-rvl/ parameter ~ with compressible

sweep parameter A@,degrees, for straight- tapered wings.

.
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